ACS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING

A REPORT ON INTERNATIONAL WEBINAR ON 17.08.2021

Department of Mechanical Engineering of ACSCE has organized an International webinar on $\mathbf{1 7}{ }^{\text {th }}$ August at 11 AM on topic of "Introduction to Automotive Electrification" to be presented by resource person Mr. Dayanand Rao, Lead Engineer, Jaguar Land Rover, UK.

Resource person having 14+ years of experience in Transportation Design (Automotive industry). Started his career as a trainee in a design service company and currently working at Jaguar and Land rover as lead engineer. All his work experience is within Tata group and also fortunate to work in field of automotive electrification from past 10 years. He is expertise in Sheet metal forming, injection molding, Vehicle packaging, GD\&T, design and development of BIW components. Target

Automotive Electrification - Brush up on the Basic

In a symmetric three-phase power supply system, three conductors each carry an alternating current of the same frequ amplitude relative to a common reference, but with a phase difference of one third of a cycle between each.

The common reference is usually connected to ground and often to a current-carrying conductor called the neutral.

Due to the phase difference, the voltage on any conductor reaches its peak at one third of a cycle after one of the other conductors and one third of a cycle before the remaining conductor. This phase delay gives constant power transfer to a balanced linear load.

Constant power transfer and cancelling phase currents are possible with any number (greater than one) of phases,
However, two phases results in a less smooth (pulsating) current to the load (making smooth power transfe more than three phases complicates infrastructure unnecessarily.

```
-aigovermmentjobsy
```


Automotive Electrification-Battery

Battery does not store electric current but it stores energy in the form of chemical energy which can be converted back to electrical energy when required.

Electro chemical potential .. Ex Li Metal has tendency to lose outer electron.
Lithium in pure form is highly reactive (react with air or water) but when it is a part of meta oxide it becomes quit stable.

- Atom is neutral when proton are equal to electron.
- When atom has less electron than Proton then its called +ve lon.
- When atom has less proton than electron thane its called -ve lon.
- Lithium-Li

$>$ Lithium Ion - Lit

Neutron

- Recording

Automotive Electrification-Battery sub system

Thermal management: battery cells temperature need to be controlled with in creation range to get best performance and to operate it safely.

- © Recoliong	Uere vinume Daymaudi M ssymen	vaw onlions -	- view

Automotive Electrification-Electrical drive unit (EDU)

Types of EDU :

- Asynchronous motor.
> Synchronous motor.

Asynchronous motor :

In an asynchronous, or induction, motor, the rotor is pulled into a spin, constantly trying to "catch up" with the rotating magnetic field created by the stator. This type of electric car motor is known for its high power output and is a common motor in vehicles.

Lesics on youtube

A	\%	48^{33}	\square	\uparrow	0	¢	save
Alin Audio	5 ant Yaso	Panicpants	Chat	Shav Scren	2xard	Reantlons	Isue

\bullet Recording

Automotive Electrification-Electrical drive unit (EDU)

Types of EDU :
$>$ Asynchronous motor.
$>$ Synchronous motor.

Asynchronous motor :

In an asynchronous, or induction, motor, the rotor is pulled into a spin, constantly trying to "catch up" with the rotating magnetic field created by the stator. This type of electric car motor is known for its high power output and is a common motor in vehicles.

- Recording

Automotive Electrification-Electrical drive unit (EDU)

Types of EDU :

- Asynchronous motor.
> Synchronous motor.

Asynchronous motor :

In an asynchronous, or induction, motor, the rotor is pulled into a spin, constantly trying to "catch up" with the rotating magnetic field created by the stator. This type of electric car motor is known for its high power output and is a common motor in vehicles.

Lesics on youtube

- Recording

Automotive Electrification-Electrical drive unit (EDU)

Synchronous Motor

In a synchronous motor, on the other hand, the rotor turns at the same speed as the magnetic field. This provides high torque at low speed, making it ideal for urban driving. Another advantage is its size: a synchronous electric car motor can be compact and low weight.

- Recording

Automotive Electrification-Electrical drive unit (EDU)

Synchronous Motor

In a synchronous motor, on the other hand, the rotor turns at the same speed as the magnetic field. This provides high torque at low speed, making it ideal for urban driving. Another advantage is its size: a synchronous electric car motor can be compact and low weight.

Automotive Electrification-Electrical drive unit (EDU)

Main difference between Synchronous and Asynchronous motor

1.Synchronous motor is a machine whose rotor speed and the speed of the stator magnetic field is equal. Asynchronous motor is a machine whose rotor rotates at the speed less than the stator magnetic field speed.
2. Synchronous motor requires an additional DC power source to initially rotate the rotor near to the synchronous speed.

Asynchronous motor does not require any additional starting source.
3.The speed of the Synchronous motor does not depend on the variation in the load. It is constant. The Speed of the Asynchronous motor decreases with the increasing load.
4.Change in applied voltage does not affect the torque of the synchronous motor, whereas it affect the torque of the Asynchronous motor.
5.With permanent magnets on 5ynchronous can act like alternator to generate electricity during regenerative braking.

Automotive Electrification - Inverter

Inverter
An inverter is a device that converts DC power to the AC power used in an electric vehicle motor. The inverter can change the speed at which the motor rotates by adjusting the frequency of the alternating current. It can also increase or decrease the power or torque of the motor by adjusting the amplitude of the signal.

htpps) theengineeningmindset comvow-inverters-worki

An insulated-gate bipolar transistor is a three-terminal power semiconductor device primarily used as an electronic switch, came to combine high efficiency and fast switching.
controller will send a signal to each IGBT telling it when to open and close. These IGBT's are paired together

Level 1 Charger
1 hour of charging $=5$ miles of dnving
120 V cord plugs into the wall

- Dedicated circuit recommended

Level 2 Charger

- 1 hour of charging = 13.25 miles of drving
- Requires 208/240 V service

Service upgrade may be needed (especially in older homes)

Level 3 - DC Fast Charger

- 30 minutes of charging $=80$-percent battery recharge - Public charging only, not for home use - Not for plug-in hybridssisome battery electric vehicles - Typically requires 480 V service

Sevel 3 - DC Fast Charger

Using two-way communication between the charger and car, the correct charging current is set based on the maximum current the charger can provide as well as the maximum current the car can receive.

Level 1 Charger
1 hour of charging $=5$ miles of diving
120 V cord plugs into the wall

- Dedicated circuit recommended

Level 2 Charger

> - 1 hour of charging $=13.25$ mides of drving
> - Requires $208 / 240 \mathrm{~V}$ service
> - Service upgrade may be needed (especially in older homes)

Level 3 - DC Fast Charger

- 30 minutes of charging $=80$-percent battery recharge - Public charging only, not for home use - Not for plug-in hytrids/some battery electric vehicles - Typically requires 480 V service

- Recording

Automotive Electrification - Hybrid Parallel

Automotive Electrification - Hybrid Parallel

Advantages
> Capable of attaining zero emission
> Economic gain
> More flexibility

Limitations

> Expensive
$>$ Complex control
> Requirement of proper algorithms
> Need of high voltage to ensure efficiency

nups./Www.mclansey com/industries/automotive-and-assembly/our-insights/second-ife-ev-batteries-the-newest-value-poot-in-energy-storage\#

